Decomposing Solution Sets of Polynomial Systems Using Derivatives

نویسندگان

  • Daniel A. Brake
  • Jonathan D. Hauenstein
  • Alan C. Liddell
چکیده

A core computation in numerical algebraic geometry is the decomposition of the solution set of a system of polynomial equations into irreducible components, called the numerical irreducible decomposition. One approach to validate a decomposition is what has come to be known as the “trace test.” This test, described by Sommese, Verschelde, and Wampler in 2002, relies upon path tracking and hence could be called the “tracking trace test.” We present a new approach which replaces path tracking with local computations involving derivatives, called a “local trace test.” We conclude by demonstrating this local approach with examples from kinematics and tensor decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

متن کامل

Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems

Many polynomial systems have solution sets comprised of multiple irreducible components, possibly of different dimensions. A fundamental problem of numerical algebraic geometry is to decompose such a solution set, using floating-point numerical processes, into its components. Prior work has shown how to generate sets of generic points guaranteed to include points from every component. Furthermo...

متن کامل

Numerical Irreducible Decomposition Using PHCpack

Homotopy continuation methods have proven to be reliable and efficient to approximate all isolated solutions of polynomial systems. In this paper we show how we can use this capability as a blackbox device to solve systems which have positive dimensional components of solutions. We indicate how the software package PHCpack can be used in conjunction with Maple and programs written in C. We desc...

متن کامل

Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm

We consider the numerical irreducible decomposition of a positive dimensional solution set of a polynomial system into irreducible factors. Path tracking techniques computing loops around singularities connect points on the same irreducible components. The computation of a linear trace for each factor certifies the decomposition. This factorization method exhibits a good practical performance o...

متن کامل

Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method

The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016